自动扬声器验证(ASV)已在现实生活中广泛用于身份认证。但是,随着语音转换的快速发展,语音合成算法和记录设备质量的提高,ASV系统很容易受到欺骗攻击。近年来,有关合成和重播语音检测的许多作品,研究人员提出了许多基于手工制作的特征的反欺骗方法,以提高合成和重播语音检测系统的准确性和鲁棒性。但是,使用手工制作的功能而不是原始波形将丢失某些信息进行抗旋转,这将降低系统的检测性能。受图像分类任务中Convnext的有希望的性能的启发,我们将Convnext网络体系结构相应地扩展到SPOOF攻击任务,并提出了端到端的反欺骗模型。通过将扩展体系结构与频道注意块相结合,提出的模型可以专注于最有用的语音表示子频段,以改善反欺骗性的性能。实验表明,对于ASVSPOOF 2019 LA评估数据集和PA评估数据集,我们提出的最佳单个系统可以达到1.88%和2.79%的误差率,这证明了该模型的抗SpoFofing能力。
translated by 谷歌翻译
注意机制在视力识别方面取得了巨大成功。许多作品致力于提高注意力机制的有效性,该机制精心设计了注意操作员的结构。这些作品需要大量实验才能在场景变化时挑选最佳设置,这会消耗大量时间和计算资源。此外,神经网络通常包含许多网络层,并且大多数研究通常使用相同的注意模块来增强不同的网络层,从而阻碍了自我发挥机制的性能的进一步改善。为了解决上述问题,我们提出了一个自我发挥的模块SEM。基于注意模块和替代注意操作员的输入信息,SEM可以自动决定选择和集成注意操作员以计算注意力图。 SEM的有效性通过广泛使用的基准数据集和流行的自我发挥网络的广泛实验来证明。
translated by 谷歌翻译
最近,提出了许多有效的自我发场模块来启动模型性能,通过利用计算机视觉中的卷积神经网络的内部信息。总的来说,许多以前的作品都忽略了考虑自我发挥机制的合并策略的设计,因为它们采用了全球平均水平,这是理所当然的,这阻碍了自我发挥机制的表现进一步改善。但是,我们从经验上发现并验证了一种现象,即全球最大速度和全球最小程度的简单线性组合可以产生匹配或超过全球平均平均水平的性能的合并策略。基于这一经验观察,我们提出了一个简单的自我发场模块SPENET,该模块Spenet采用了基于全球最大功能和全球最小程度的自适应汇总策略,以及用于生成注意力图的轻量级模块。 Spenet的有效性通过广泛使用的基准数据集和流行的自我注意力网络进行了广泛的实验证明。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
Recently the deep learning has shown its advantage in representation learning and clustering for time series data. Despite the considerable progress, the existing deep time series clustering approaches mostly seek to train the deep neural network by some instance reconstruction based or cluster distribution based objective, which, however, lack the ability to exploit the sample-wise (or augmentation-wise) contrastive information or even the higher-level (e.g., cluster-level) contrastiveness for learning discriminative and clustering-friendly representations. In light of this, this paper presents a deep temporal contrastive clustering (DTCC) approach, which for the first time, to our knowledge, incorporates the contrastive learning paradigm into the deep time series clustering research. Specifically, with two parallel views generated from the original time series and their augmentations, we utilize two identical auto-encoders to learn the corresponding representations, and in the meantime perform the cluster distribution learning by incorporating a k-means objective. Further, two levels of contrastive learning are simultaneously enforced to capture the instance-level and cluster-level contrastive information, respectively. With the reconstruction loss of the auto-encoder, the cluster distribution loss, and the two levels of contrastive losses jointly optimized, the network architecture is trained in a self-supervised manner and the clustering result can thereby be obtained. Experiments on a variety of time series datasets demonstrate the superiority of our DTCC approach over the state-of-the-art.
translated by 谷歌翻译
Accurate and smooth global navigation satellite system (GNSS) positioning for pedestrians in urban canyons is still a challenge due to the multipath effects and the non-light-of-sight (NLOS) receptions caused by the reflections from surrounding buildings. The recently developed factor graph optimization (FGO) based GNSS positioning method opened a new window for improving urban GNSS positioning by effectively exploiting the measurement redundancy from the historical information to resist the outlier measurements. Unfortunately, the FGO-based GNSS standalone positioning is still challenged in highly urbanized areas. As an extension of the previous FGO-based GNSS positioning method, this paper exploits the potential of the pedestrian dead reckoning (PDR) model in FGO to improve the GNSS standalone positioning performance in urban canyons. Specifically, the relative motion of the pedestrian is estimated based on the raw acceleration measurements from the onboard smartphone inertial measurement unit (IMU) via the PDR algorithm. Then the raw GNSS pseudorange, Doppler measurements, and relative motion from PDR are integrated using the FGO. Given the context of pedestrian navigation with a small acceleration most of the time, a novel soft motion model is proposed to smooth the states involved in the factor graph model. The effectiveness of the proposed method is verified step-by-step through two datasets collected in dense urban canyons of Hong Kong using smartphone-level GNSS receivers. The comparison between the conventional extended Kalman filter, several existing methods, and FGO-based integration is presented. The results reveal that the existing FGO-based GNSS standalone positioning is highly complementary to the PDR's relative motion estimation. Both improved positioning accuracy and trajectory smoothness are obtained with the help of the proposed method.
translated by 谷歌翻译
In person re-identification (ReID) tasks, many works explore the learning of part features to improve the performance over global image features. Existing methods extract part features in an explicit manner, by either using a hand-designed image division or keypoints obtained with external visual systems. In this work, we propose to learn Discriminative implicit Parts (DiPs) which are decoupled from explicit body parts. Therefore, DiPs can learn to extract any discriminative features that can benefit in distinguishing identities, which is beyond predefined body parts (such as accessories). Moreover, we propose a novel implicit position to give a geometric interpretation for each DiP. The implicit position can also serve as a learning signal to encourage DiPs to be more position-equivariant with the identity in the image. Lastly, a set of attributes and auxiliary losses are introduced to further improve the learning of DiPs. Extensive experiments show that the proposed method achieves state-of-the-art performance on multiple person ReID benchmarks.
translated by 谷歌翻译
We are introducing a multi-scale predictive model for video prediction here, whose design is inspired by the "Predictive Coding" theories and "Coarse to Fine" approach. As a predictive coding model, it is updated by a combination of bottom-up and top-down information flows, which is different from traditional bottom-up training style. Its advantage is to reduce the dependence on input information and improve its ability to predict and generate images. Importantly, we achieve with a multi-scale approach -- higher level neurons generate coarser predictions (lower resolution), while the lower level generate finer predictions (higher resolution). This is different from the traditional predictive coding framework in which higher level predict the activity of neurons in lower level. To improve the predictive ability, we integrate an encoder-decoder network in the LSTM architecture and share the final encoded high-level semantic information between different levels. Additionally, since the output of each network level is an RGB image, a smaller LSTM hidden state can be used to retain and update the only necessary hidden information, avoiding being mapped to an overly discrete and complex space. In this way, we can reduce the difficulty of prediction and the computational overhead. Finally, we further explore the training strategies, to address the instability in adversarial training and mismatch between training and testing in long-term prediction. Code is available at https://github.com/Ling-CF/MSPN.
translated by 谷歌翻译
Crowd counting plays an important role in risk perception and early warning, traffic control and scene statistical analysis. The challenges of crowd counting in highly dense and complex scenes lie in the mutual occlusion of the human body parts, the large variation of the body scales and the complexity of imaging conditions. Deep learning based head detection is a promising method for crowd counting. However the highly concerned object detection networks cannot be well applied to this field for two main reasons. First, most of the existing head detection datasets are only annotated with the center points instead of bounding boxes which is mandatory for the canonical detectors. Second, the sample imbalance has not been overcome yet in highly dense and complex scenes because the existing loss functions calculate the positive loss at a single key point or in the entire target area with the same weight. To address these problems, We propose a novel loss function, called Mask Focal Loss, to unify the loss functions based on heatmap ground truth (GT) and binary feature map GT. Mask Focal Loss redefines the weight of the loss contributions according to the situ value of the heatmap with a Gaussian kernel. For better evaluation and comparison, a new synthetic dataset GTA\_Head is made public, including 35 sequences, 5096 images and 1732043 head labels with bounding boxes. Experimental results show the overwhelming performance and demonstrate that our proposed Mask Focal Loss is applicable to all of the canonical detectors and to various datasets with different GT. This provides a strong basis for surpassing the crowd counting methods based on density estimation.
translated by 谷歌翻译